Zum Inhalt springenZur Suche springen

AK Kalscheuer

Aktuelles

Veröffentlichung in Cell Chemical Biology - Neues Wirkprinzip gegen Tuberkulose

26. Juli 2024

Gemeinsam ist es Forschenden der Heinrich-Heine-Universität Düsseldorf (HHU) und der Universität Duisburg-Essen (UDE) gelungen, eine Gruppe von Molekülen zu identifizieren und zu synthetisieren, die auf neue Art und Weise gegen den Auslöser der Tuberkulose wirken. In der Fachzeitschrift Cell Chemical Biology beschreiben sie, dass die sogenannten Callyaerine grundlegend anders als bisherige antibiotische Wirkstoffe gegen die Infektionskrankheit wirken.

Die Infektionskrankheit Tuberkulose wird durch das Bakterium Mycobacterium tuberculosis (kurz M. tuberculosis) verursacht. Weltweit erkranken jährlich über zehn Millionen Menschen neu. Allein im Jahr 2021 starben laut WHO-Angaben 1,6 Millionen Menschen an Tuberkulose. Damit zählt sie zu den bedeutsamsten Infektionskrankheiten. Insbesondere in Ländern mit unzureichender Gesundheitsversorgung stellt sie eine ernsthafte Bedrohung für die Bevölkerung dar.

M. tuberculosis hat inzwischen Resistenzen gegen viele Antibiotika entwickelt, was die Therapie sehr erschwert. Es stehen heute nur noch wenige Medikamente gegen resistente Stämme zur Verfügung. Die Forschung sucht deshalb nach neuen antibakteriellen Verbindungen und Wirkmechanismen, um auf deren Basis grundlegend neue Arzneimittel entwickeln zu können.

Ein Forschungsteam um Prof. Dr. Rainer Kalscheuer vom Institut für Pharmazeutische Biologie und Biotechnologie der HHU und Prof. Dr. Markus Kaiser vom Zentrum für Medizinische Biotechnologie der Universität Duisburg-Essen hat mit den sogenannten Callyaerinen einen solchen grundlegend neuen Ansatz gefunden. Diese ursprünglich marinen Naturstoffe zählen chemisch zu den sogenannten Cyclopeptiden.

 „Uns ist es gelungen, die ursprünglich in Meeresschwämmen vorkommende Substanz chemisch zu synthetisieren, um mit ihr in Zellkulturen die Wirkung auf Tuberkulosebakterien zu testen. Dadurch konnten wir neue, potentere Derivate herstellen, die es in der Natur so nicht gibt. Erst wenn eine solche chemische Synthese gelingt, ist ein potenzieller Wirkstoff später auch im großen Maßstab als Medikament einsetzbar“, erläutert Dr. David Podlesainski von der Universität Duisburg-Essen, einer der beiden Erstautoren der in Cell Chemical Biology erschienenen Studie.  

Das Tuberkulosebakterium infiziert vor allem die menschlichen Fresszellen, die sogenannten Makrophagen, anschließend vermehren sich die Bakterien in den Makrophagen. Die Forschenden fanden nun heraus, dass Callyaerine das Wachstum des Bakteriums innerhalb der menschlichen Zelle hemmen können.

Emmanuel Tola Adeniyi, Doktorand an der HHU, der weitere Erstautor der Studie: „Die Callyaerine greifen ein bestimmtes, für die Lebensfähigkeit des Bakteriums nicht-essentielles Membranprotein von M. tuberculosis namens Rv2113 an. Geschieht dies, wird der Stoffwechsel des Bakteriums umfassend gestört und es am Wachstum gehindert. Menschliche Zellen bleiben dagegen von den Callyaerinen unberührt.“

Prof. Kalscheuer, Korrespondenzautor der Studie: „Mit den Callyaerinen haben wir einen neuen Wirkmechanismus entdeckt. Diese Stoffe blockieren nicht, wie andere Antibiotika, lebenswichtige Stoffwechselwege in der bakteriellen Zelle. Vielmehr greifen sie direkt ein nicht-essentielles Membranprotein des Bakteriums an, welches bislang nicht als möglicher Wirkort in Betracht gezogen wurde.“

Prof. Kaiser, der zweite Korrespondenzautor, legt den Fokus auf die weitere Perspektive: „In weiteren Forschungsarbeiten muss jetzt geklärt werden, wie Callyaerine genau mit Rv2113 interagieren und wie diese Interaktion verschiedene zelluläre Prozesse so stört, so dass M. tuberculosis nicht mehr wachsen kann. Wir konnten aber grundsätzlich zeigen, dass auch nicht-essentielle Proteine wertvolle Zielstrukturen für die Entwicklung neuartiger Antibiotika darstellen können.“

Originalpublikation

David Podlesainski, Emmanuel T. Adeniyi, Yvonne Gröner, Florian Schulz, Violetta Krisilia, Nidja Rehberg, Tim Richter, Daria Sehr, Huzhuyue Xie, Viktor E. Simons, Anna-Lene Kiffe-Delf, Farnusch Kaschani, Thomas R. Ioerger, Markus Kaiser, and Rainer Kalscheuer. The anti-tubercular callyaerins target the Mycobacterium tuberculosis-specific non-essential membrane protein Rv2113. Cell Chemical Biology 31 (2024).

DOI: 10.1016/j.chembiol.2024.06.002

________________________________________________________________

Publication on elucidation of the antibacterial mode-of-action of nature-inspired bisindole alkaloids

14.06.2024

There is a new research paper of the Kalscheuer group elucidating the antibacterial mechanism and molecular targets of synthetic nature-inspired bisindoles that exhibit potent antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA), published in ACS Infectious Diseases (https://pubs.acs.org/doi/abs/10.1021/acsinfecdis.3c00657).  In this paper, mechanistic studies revealed that synthetic bisindoles impact the cytoplasmic membrane of Gram-positive bacteria by promiscuously interacting with lipid II and membrane phospholipids while rapidly dissipating membrane potential, providing a potential starting point for drug development in the fight against MRSA. While most pharmaceutical drugs are inhibiting protein targets, bisindole alkaloids are unusual as they interact with lipids, similar to certain antibiotics such as vancomycin. This study was conducted in close collaboration with the group of Thomas Müller (Institute of Organic Chemistry and Macromolecular Chemistry, HHU Düsseldorf) in context of the DFG Research Training Group GRK 2158 “Natural products and natural product analogs against therapy-resistant tumors and microorganisms: new lead structures and modes of action”.

 

Original publication:

Adeniyi ET*, Kruppa M*, De Benedetti S, Ludwig KC, Krisilia V, Wassenberg TR, Both M, Schneider T, Müller TJJ*, Kalscheuer R*. Synthesis of bisindole alkaloids and their mode of action against methicillin-resistant Staphylococcus aureus. ACS Inf. Dis 10, 1958–1969 (2024). https://doi.org/10.1021/acsinfecdis.3c00657

*These authors contributed equally. 

________________________________________________________________

Erfolgreicher Abschluss der ersten Runde des Bürgeruni-Projekts „Endophytenjäger“

23.05.2024

Im Rahmen der Bürgeruniversität haben sich in einer ersten Projektrunde acht Bürger*innen an einem Forschungsprojekt unter der Leitung von Prof. Dr. Rainer Kalscheuer beteiligt, welches vom Rektorat der HHU mit einer Sonderförderung ermöglicht wurde. An insgesamt fünf Kurstagen konnten die Bürger*innen einen hautnahen, praxisbezogenen Einblick in den wissenschaftlichen Laboralltag und die Wirkstoffforschung gewinnen und sich über die Problematik der antimikrobiellen Resistenzentwicklung informieren. Die Bürger*innen sammelten Pflanzenmaterial, aus denen sie im Labor unter der Anleitung von Prof. Dr. Rainer Kalscheuer und Dr. Lasse van Geelen endophytische Pilze isolierten. Neben der Durchführung einer Polymerasekettenreaktion und anschließender DNA-Sequenzierung zur taxonomischen Identifizierung der Pilze testeten die Bürger*innen Extrakte der Pilze auf antibakterielle Aktivität. Die endophytischen Pilze werden in der Arbeitsgruppe Kalscheuer nun weiter auf ihrer antibakteriellen Inhaltsstoffe hin untersucht. Somit unterstützen die engagierten Bürger*innen nicht nur langfristig die Forschungsaktivitäten der Arbeitsgruppe Kalscheuer, sondern könnten zukünftig vielleicht sogar selber einen handfesten praktischen Beitrag zur Entwicklung neuer, dringend benötigter Wirkstoffe geleistet haben. Weitere Informationen zu unserem Bürgeruni-Projekt „Endophytenjäger“ finden sie unter diesem Link.

Contribution to an invited review on bacterial α-glucan metabolism published in Chemical Reviews

24.04.2024

See our recent contribution to an invited review article entitled “Architecture, function, regulation and evolution of α-glucans metabolic enzymes in prokaryotes” published in Chemical Reviews, which is one of the highest-ranked journals covering general topics of chemistry (IF 62.1). This review was written by Rainer Kalscheuer in collaboration  with colleagues from the University of the Basque Country, the Molecular Biology Institute of Barcelona (IBMB), and the University of Lille.

 

Original publication:

Cifuente JO, Colleoni C, Kalscheuer R, Guerin ME. Architecture, Function, Regulation, and Evolution of α-Glucans Metabolic Enzymes in Prokaryotes. Chem Rev. (2024) online ahead of print  (doi: 10.1021/acs.chemrev.3c00811).

________________________________________________________________

Contribution of the Kalscheuer lab to a study advancing the homo-BacPROTAC concept as new antimycobacterial treatment option published in Nature Communications

05.03.2024

See our recent contribution to a study advancing the homo-BacPROTAC concept as new antimybacterial treatment option published in Nature Communications. This study was conducted in collaboration with Guido Boehmelt and coworkers at Boehringer Ingelheim RCV, Vienna, Austria, Lukas Junk at Saarland University, and further colleagues.

Homo-BacPROTACs consist of two cyclomarin A-molecules, which both can bind separate ClpC1 proteins. ClpC1 represents the mycobacterial ATP-driven unfoldase of the quasi-proteasomal like ClpC:ClpP (ClpCP) protease. Homo-BacPROTACs induce proximity between separate ClpC1 proteins, which results in selfdegradation of ClpC1 and impairs activity of the Clp protein quality control system. This innovative technology may provide a new way to tackle the rising problem of antimicrobial resistance in the human pathogen Mycobacterium tuberculosis.

 

Original publication:

Junk L*, Schmiedel VM*, Guha S, Fischel K, Greb P, Vill K, Krisilia V, van Geelen L, Rumpel K, Kaur P, Krishnamurthy RV, Narayanan S, Shandil RK, Singh M, Kofink C, Mantoulidis A, Biber P, Gmaschitz G, Kazmaier U, Meinhart A, Leodolter J, Hoi D, Junker S, Morreale FE, Clausen T, Kalscheuer R, Weinstabl H, Boehmelt G. Homo-BacPROTAC-induced degradation of ClpC1 as a strategy against drug-resistant mycobacteria. Nat Commun 15, 2005 (2024). https://doi.org/10.1038/s41467-024-46218-7

*These authors contributed equally. 

________________________________________________________________

Contribution of the Kalscheuer lab to a seminal study on the BacPROTAC concept published in the leading life science journal Cell

03.05.2023

The Kalscheuer lab is pleased to share a contribution to a seminal study reporting on development of the BacPROTAC concept as a new antimycobacterial treatment option published in the leading life science journal Cell (IF 66.85). This study was conducted in collaboration with Tim Clausen´s lab at the Vienna BioCenter, Lukas Junk at Saarland University, and further collaegues.

 

Mycobacterium tuberculosis, the causative agent of tuberculosis, was the second leading cause of death by a single pathogen after SARS-CoV-2 in 2021. Although the Corona pandemic has been overcome, tuberculosis remains a major global health burden. Discovering new effective drugs to tackle the increasing problem of emerging multi-drug resistant tuberculosis proves to be difficult due to the high intrinsic resistance of M. tuberculosis.

A promising drug target is the Clp system in M. tuberculosis, which is essential to eliminate misfolded and futile proteins. An increase or decrease in the Clp activity could lead to an imbalance of protein synthesis and salvage ultimately resulting in cell death. The natural products cyclomarin A and ecumicin can bind to one crucial component of the Clp system, the unfoldase ClpC1, which prevents ClpC1 to interact normally with misfolded or futile proteins. As a result, the Clp system transitions into hyperactivity and therefore degrades nearby proteins, which might be important for cell survival. However, the bacterial defence towards cyclomarin A and ecumicin reacts in upregulation of another Clp protein, ClpC2. This protein protects the ClpC1 protein from binding cyclomarin A and ecumicin and decreases the efficiency of the drugs.

Homo-BacPROTACs, which have been designed and evaluated in this study, consist of two cyclomarin A-molecules, which both can bind separate ClpC1 proteins. Binding two different ClpC1 proteins brings them in close proximity to one another resulting in degradation and impaired activity of the Clp system. Additionally, the Homo-BacPROTACs also target ClpC2 and thereby circumvent the resistance mechanism. The BacPROTAC system can be altered and adapted to target other proteins and selectively degrade these proteins facilitating the Clp system. This highly adaptive and innovative technology provides a new way to tackle the rising problem of antimicrobial resistance in M. tuberculosis.

 

Original publication:

David M. Hoi*, Sabryna Junker*, Lukas Junk, Kristin Schwechel, Katharina Fischel, David Podlesainski, Paige M. E. Hawkins, Lasse van Geelen, Farnusch Kaschani, Julia Leodolter, Francesca Ester Morreale, Stefan Kleine, Somraj Guha, Klaus Rumpel, Volker M. Schmiedel, Harald Weinstabl, Anton Meinhart, Richard J. Payne, Markus Kaiser, Markus Hartl, Guido Boehmelt, Uli Kazmaier, Rainer Kalscheuer, Tim Clausen: “Clp-targeting BacPROTACs impair mycobacterial proteostasis and survival”. Cell (2023), DOI: 10.1016/j.cell.2023.04.009
*These authors contributed equally. 

________________________________________________________________

06.10.2022

The Kalscheuer lab congratulates Prof. Carolyn R. Bertozzi for being awarded the Nobel Prize in Chemistry 2022 "for the development of click chemistry and bioorthogonal chemistry" !

Check out our translational collaborative work with Carolyn using bioorthogonal chemistry to study and exploit trehalose metabolism in Mycobacterium tuberculosis.

Verantwortlichkeit: